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Abstract. Bandgaps in two- and three-dimensional photonic crystals are hard to achieve
due to the limited contrast in the dielectric permeability available with conventional dielectric
materials. The situation changes for periodic arrangements of scatterers consisting of
materials with a Drude-like behaviour of the dielectric function. We show for
two-dimensional square and triangular lattices that such systems have in-plane complete
photonic bandgaps (CPBGs) below infrared wavelengths. Of the two geometries, the optimal
one for ideal Drude-like behaviour is a square lattice, whereas for Drude-like behaviour in
silver, using experimental data (Palik E D 1991 Handbook of Optical Constants of Solids
vol 1 (San Diego: Academic)), the optimal geometry is a triangular lattice. If the lattice
spacing is tuned to a characteristic plasma wavelength, several CPBGs open in the spectrum
and their relative gap width can be as large as 36.9% (9.9% in a nonabsorptive window) even
if the host dielectric constant εh = 1. Such structures can provide CPBG structures with
bandgaps down to ultraviolet wavelengths.

Keywords: Photonic bandgap materials, fibre waveguides, wave optics, nonlinear optical
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1. Introduction

There has been a growing interest in photonic crystals, i.e.
structures with a periodically modulated dielectric constant.
Such structures open up new ways of manipulating electro-
magnetic wave emission and propagation processes [1]. In
fact, there is a common belief that, in the near future, pho-
tonic crystal systems will allow us to control light in much
the same way as electrons can be controlled in ordinary crys-
tals [1]. They also promise to become a laboratory for test-
ing fundamental processes involving interactions of radiation
with matter under novel conditions. In analogy with an elec-
tron moving in a periodic potential, propagation at certain
frequencies can become impossible inside a photonic crys-
tal, independent of photon polarization and the direction of
propagation—a complete photonic bandgap (CPBG) [2, 3].
The presence of a CPBG severely modifies the quantum elec-
trodynamics as compared with the vacuum case. This offers
the possibility of controlling the spontaneous emission of
embedded atoms and molecules in volumes much greater
than the emission wavelength [5]. For many technologi-
cal applications it is enough to achieve a photonic bandgap
(PBG) for in-plane propagation and, for applications involv-
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ing highly polarized light sources, it can be sufficient to obtain
a PBG for a single polarization only. (Note that for in-plane
propagation, the two photon polarizations do not mix and
Maxwell’s equations reduce to two scalar equations, one for
each polarization.) Numerous applications have been sug-
gested involving two-dimensional (2D) photonic structures,
i.e. new designs for light-emitting diodes [6], polarizers [7],
high transmission through sharp bends [8], efficient bandpass
filters, channel drop filters, and, in one dimension, waveguide
crossing without cross-talk [9].

In the following, we shall focus on 2D photonic
structures. For such structures, only an in-plane CPBG can
ensure light propagation control whatever the in-plane light
propagation. Unfortunately, fabrication of photonic crystals
with such a gap poses a significant technological challenge
for 2D structures already in the near-infrared [10], not to
mention three-dimensional (3D) photonic structures [11].
A 2D photonic crystal can be thought of as a 2D periodic
arrangement of scatterers with a dielectric constant εs

embedded in a host with a dielectric constant εh. In view
of the scale invariance present in Maxwell’s equations it
makes sense to introduce the relative gap width gw as the
gap width-to-midgap frequency ratio, �ω/ωm. Practical
crystals are expected to have gw larger than a few per cent—to
leave a margin for gap–edge distortions due to omnipresent
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Figure 1. If, in a conventionally etched 2D square lattice of air
cylinders in silica, the holes are filled with a material showing a
Drude-like behaviour, the band structure changes drastically from
(a) showing no CPBG to (b) that showing four CPBGs with
ωm ≈ 0.25, 0.65, 0.69, 0.79 and gw ≈ 35%, 2.9%, 5.4% and
11.4%, respectively. In both cases the lattice parameters are the
same, with cylinder filling fraction f = 65% and εh = 2.16. In
the second case, a/λp = 1.1. In addition, note a bandgap for TM
polarization (s-polarization; E parallel to the cylinder axis) below
the first band in part (b), which is characteristic for 2D structures
with metallic components [7]. For TE polarization E is
perpendicular to the cylinder axis.

impurities and yet to have a CPBG useful for applications.
Then, the dielectric contrast δ = max(εh/εc, εc/εh) ≈ 8 is
required to open a CPBG with gw = 6% [12]. Unfortunately,
this required dielectric contrast is rather large and strongly
limits the choice of available materials in the visible.

The main goal of this paper is to demonstrate that
practical CPBGs can already open for the simplest lattice
and scatterer geometries, as long as the scatterer dielectric
function is correctly chosen. Therefore, we shall only discuss
square and triangular lattices of infinitely long cylindrical
scatterers with circular cross section and with one cylinder
per lattice unit cell. Even then, for instance in a 2D square
lattice of cylinders for a cylinder filling fraction of 65% in a
silica host (see figure 1), several CPBGs open, one of them
larger than 11.4% and another larger than 35%, provided that
cylinders are made out of material with a Drude-like dielectric
function [13, 14]

εs(ω) = 1 − ω2
p/ω2, (1)

where ωp denotes the plasma frequency. Note that the Drude-
like dielectric function is zero for ω = ωp which makes
δ infinite and enables one to avoid the restrictions on the
dielectric contrast. This approach has been shown to also
work for 3D photonic structures [15].

A Drude-like behaviour of εs(ω) is typical for metals
and semiconductors. For notational simplicity we shall often
refer to a scatterer having such a dielectric function (1) as a
metallic one, although we are aware that: (i) not all metals
show a Drude-like behaviour and (ii) such a behaviour can
also be found in new artificial structures [16]. Consequently,
the proposed structures could be realized by introducing, for
instance by electrochemical deposition, a Drude-like material

into the holes of a periodic structure of air holes in a dielectric,
a structure that has no CPBG without the Drude-like material
inserted (see figure 1).

Metals can be quite lossy at optical frequencies.
Nevertheless, the absorption can be rather small in a certain
frequency window, where the metal behaves as a highly
dispersive dielectric. Typically, the plasma wavelength
λp = 2πc/ωp, where c is the speed of light in vacuum,
is closer to the short-wavelength edge of the nonabsorptive
window, since for shorter wavelengths there is a higher
probability of inducing electronic interband transitions. We
restricted our investigation mainly to the ‘nonabsorptive’
window (0.5ωp � ω � 1.1ωp for the ideal Drude behaviour;
310–520 nm for silver [17]) which explains why the main
part of the band structure shown in our figures is below
the plasma frequency. Fortunately, this is also the region
where one finds most of CPBGs. In real systems, such as
silver, a deviation from the ideal Drude behaviour occurs,
in particular in the proximity of the zero-crossing of Re ε at
some λz (λz = 328 nm for silver). Such a λz is red-shifted
compared with λp (λp ≈ λz/1.9 for silver) [17] and the band
structure between λz and λp can be modified as compared
with the ideal Drude behaviour (1). We studied both square
and triangular lattices, the Bravais lattices that have Brillouin
zones that come closest to a circle, and are hence expected to
give rise to the biggest bandgaps. We find that for an ideal
Drude-like material a square lattice leads to the biggest gaps
of the two lattice types studied. However, the deviation of the
dielectric function of silver from the ideal Drude behaviour
means that silver triangular lattices result in bigger CPBGs
than square lattices. In both cases, i.e. ideal Drude/square
and silver/triangular, a CPBG with gw ≈ 10% is even found
for a host dielectric constant εh as low as εh = 1.

2. Method

We performed band-structure calculations using a 2D
analogue of the familiar Korringa–Kohn–Rostocker (KKR)
method [18]. Since, for in-plane propagation, the two
photon polarizations decouple, the calculation reduces to
the use of the ordinary 2D scalar KKR method [19] for
either polarization. This polarization decoupling is specific
to two dimensions and is obviously not the case for 3D
photonic structures where a truly vectorial KKR method is
required [20]. Given a plasma frequency ωp, we performed
calculations for frequencies from ≈0.5ωp to 1.1ωp, assuming
εh is constant in this frequency region. In contrast to the
plane-wave method [4, 7], dispersion does not cause any
difficulties for the KKR method and the computational time is
the same as without dispersion. Also (cf [7]), the calculation
is not limited to the case of a small metallic volume fraction
of f � 1% and one can safely proceed up to the case of
closely packed metallic cylinders. Last but not least, there are
no problems in obtaining convergence for the so-called flat
bands first encountered in [7]. In order to ensure precision of
around 0.1%, cylindrical waves were included with angular
momentum up to lmax = 24. This means that the size of a
typical secular matrix is reduced by a factor of almost ten as
compared with the plane-wave method [7].
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3. Results for an ideal Drude metal

The qualitative behaviour of the band structure for a 2D
periodic arrangement of Drude-like scatterers is similar to
that in three dimensions [15]. The plasma wavelength sets
a characteristic scale and, correspondingly, bandgaps only
occur for certain values of rc/λp, or, a/λp, where rc and a

are the cylinder radius and lattice constant, respectively. Of
the two geometries studied, a square lattice is optimal for a
Drude metal. Then, a CPBG with gw nearly 10% opens even
if εh is as low as εh = 1. Other noteworthy points in the case
of εh = 1 are:

(1) No or only tiny CPBGs for a/λp � 0.9.
(2) No CPBGs larger than 5% below a/λp � 1.
(3) For f fixed, a CPBG gw grows rapidly with a/λp until

a/λp ≈ 1.1 is reached, with the optimal filling fraction
being 60% � f � 70%; for a/λp ≈ 1.1 the gap width
gw increases only marginally and, beyond a/λp ≈ 1.47,
gw decreases.

(4) No CPBG with gw � 5% exists for a/λp � 2.
(5) A CPBG with gw � 5% can be achieved for 43% �

f � 77%.

For εh = 1, the largest gw is found to be 9.9% for f = 65%
and a/λp ≈ 1.47. When silica (εh = 2.16) is used as the
host, the maximal gap width can be increased further. For
example, a structure with f = 65%, εh = 1, and a/λp = 1.1
exhibits a CPBG with gw = 8.7%, whereas for εh = 2.16
this CPBG width increases to gw = 11.4%.

Besides the CPBGs mentioned above, we also found
very large CPBGs at lower frequencies, outside the
‘nonabsorptive’ window, typically at midgap frequencies of
20% of the plasma frequency. For instance, in the case of the
structure presented in figure 1(b) for εh = 2.16, we found a
CPBG with gw = 35%, at ωm/ωp = 0.217 (gw = 36.9%, at
ωm/ωp = 0.213 for εh = 1).

For a triangular lattice one encounters more CPBGs.
However, the maximal gw found was 3.5%.

4. Results for silver

For silver we used the experimental data from Palik [21]. The
deviation from the ideal Drude behaviour, which occurs in the
proximity of the zero-crossing of Re ε at λz = 328 nm [17],
means that for silver a triangular lattice leads to bigger
CPBGs than a square lattice. For a fixed f , the relative gap
width gw increases with increasing a/λz (or with a/λp) until
a/λz ≈ 2 (a/λp ≈ 1.1) is reached. Afterwards, CPBGs
fall into a region of increased absorption. Interestingly,
a/λm, where λm is the midgap wavelength, stays close to
unity: a/λm ≈ 0.9 for a = 329 nm and a/λm ≈ 1.1 for
a = 650 nm.

For a fixed lattice constant a = 650 nm we found
the largest CPBG, with gw = 11.7%, for f = 58%, with
the entire CPBG still lying in the ‘nonabsorbing’ frequency
window (see figure 2). Note that in this case the distance
between the silver cylinders is ≈115 nm. Manufacturing
of such a structure is realistic, since the minimal dielectric
width between two cylinders technologically realized in
semiconductors such as GaAs is 30 nm [22]. The dependence
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Figure 2. Calculated photonic band structure for a triangular
lattice of silver cylinders in silica (f = 58%, a = 650 nm,
a/λz = 1.98, εh = 2.16). TM and TE bands are drawn with full
and dashed curves, respectively. Note three CPBGs at
ωm ≈ 1.10, 1.17, 1.25 with gw = 11.7%, 1% and 5.4%,
respectively.

1 2 3 4 5

εh

0.6

1

1.4

1.8
ω

a/
2π

c

TM bandedge
TE bandedge

8

9

10

11

12

13

∆ω
/ω

m
 [%

]

∆ω/ωm

Figure 3. The dependence of band edges and gw of the largest
CPBG on the host dielectric constant εh for a triangular lattice of
silver cylinders, f = 58%, and a/λz = 1.98.

of the largest CPBGs bandgap edges and gw on εh for
f = 58% and a = 650 nm is shown in figure 3. The figure
shows that as εh increases, gw saturates at ≈12.5%.

For a square lattice, much smaller CPBGs are found with
gw � 4%.

5. Discussion

Our aim was to show that practical in-plane CPBGs can
open for the simplest 2D lattice and scatterer geometries, as
long as the scatterer dielectric function is correctly chosen.
Our proposal in using scatterers with a metallic Drude-like
dielectric function (1) offers a new and promising way to
fabricate 2D structures with a practical CPBG in the wide
frequency range from GHz to ultraviolet. Indeed, a typical
plasma frequency of a metal is in the ultraviolet, whereas that
of a semiconductor is in the infrared. On the other hand, it has
been shown [16] that a whole new class of artificial materials
can be fabricated in which the plasma frequency may be
reduced by up to six orders of magnitude compared with
conventional materials, from UV down to GHz frequencies.
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Correspondingly, the proposed structures can provide CPBG
structures in this frequency range.

The observed magnitude and robustness of the in-plane
CPBG of the metallo-dielectric structures allows one to
speculate that an inclusion of metallic (silver) wires could
also boost the performance of the photonic crystal fibre
designed by Knight et al [23]. The photonic crystal fibre
[23] is a 2D photonic periodic arrangement of thin cylindrical
glass fibres where the light is sent along the cylinder axis.
In lateral directions, the localization of light is achieved in
complete analogy to the case of electrons: it is possible to
introduce a defect at the centre of the photonic crystal fibre,
for instance by omitting one cylinder, such that it induces
a transversely localized mode with frequency within a 2D
CPBG. The light can then propogate with that frequency
along the cylinder axis even if the core of the photonic crystal
fibre is air and if the cladding has a higher refractive index.

Although we have shown that one can achieve a
relative gap width gw larger than 10%, one expects that the
width can be enlarged further by considering lattices with
more than one scatterer per unit cell [23] or using more
complicated scatterers such as cylinders with an ellipsoidal
cross section [24] and coated cylinders, which were outside
the scope of this paper. We also point out that the idea of using
highly dispersive metallic and semiconductor components for
photonic structures is not new [7, 16, 25–28]. Nevertheless,
calculations using the plane-wave method [2] have often
been restricted to an extremely low filling fraction, f �
1%, of metallic components [7]. In addition, the main
interest was in microwave [16,26] or even in radiofrequency
applications [27]. Surprisingly enough, no systematic search
has been made for CPBGs with a Drude-like behaviour (1)
of the dielectric function.

There have been many studies involving 2D structures
since the pioneering work of Maradudin and collabora-
tors [4]. However, these mostly require unrealistic values
of the dielectric contrast δ to produce a CPBG below infrared
wavelengths. The issue of the optimal 2D photonic structure
with a CPBG below infrared wavelengths has only recently
been addressed by Barra et al [12]. For a graphite arrange-
ment of dielectric cylinders with a dielectric constant εc in
air, they showed that the dielectric contrast δ ≈ 8 is enough
to open a CPBG with gw = 6% [12]. The required cylinder
diameter to obtain a CPBG in the visible (around 500 nm)
was 80 nm. Although this is technologically manageable,
the required dielectric contrast δ ≈ 8 is large and strongly
limits the choice of available materials in the visible. Barra
et al suggested the use of GaN [12]. However, this material
is very hard and problematic to etch (see, however, [29] for
recent progress).

Throughout this work cylinders have been assumed to be
infinitely long and we considered only in-plane propagation.
However, as has been demonstrated by Labilloy et al [30],
these facts do not preclude the application of our results to
finite structures with finite cylinder lengths, provided that
their aspect ratio, i.e. height/radius, is reasonably high (≈10).

From a practical point of view there are, in addition
to the possibility of obtaining a practical in-plane CPBG,
several additional advantages in using metallo-dielectric
structures. Since metals are known to possess high nonlinear

susceptibilities [31], interesting possibilities such as optical
switching and bistability [32,33] can be achieved and studied
in the presence of an in-plane CPBG. In addition, a nonzero
electric conductivity can be used in pumping and/or in a
fabrication of a new class of displays.

Finally, a few words about absorption. Since within
CPBGs in the nonabsorptive window the size parameter of
cylinders is x = 2πrc/λ � 5, surface plasmon absorption
is avoided and absorption is entirely determined by bulk
properties and hence small. Such a moderate absorption
has been shown to modify band structure only slightly [28].
Recently, a study of a 1D model showed that a certain degree
of absorption can even be advantageous, since absorption
turned out to widen some of the gaps by as much as 50% [34].
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